NEW SYNTHESIS OF 1,2,4-TRIAZOLIDINE-5-THIONE DERIVATIVES

A.MARTVOŇ, M.UHER and Š.STANKOVSKÝ

Department of Organic Chemistry, Slovak Institute of Technology, 88 037 Bratislava

Received March 3rd, 1976

Reaction of substituted benzylideneanilines (I) with thiophosgene afforded derivatives of N-(1-chlorobenzyl)phenylthiocarbamoyl chloride (II) which were transformed by reaction with N,N-dimethylhydrazine or N-(2,4-dinitrophenyl)hydrazine into derivatives of 1,2,4-triazolidine-5-thione III. ¹H-NMR and IR spectra of the products are discussed.

Although reactions of carbamoyl chlorides with hydrazines are known¹, preparation of 1,2,4-triazolidine-5-thione derivatives by an analogous reaction of thiocarbamoyl

TABLE I						
Physical Constants,	Yields and	Analytical	Data of	the Sy	nthesised	Derivatives

Com-	Substituent			Formula	Calcu	M.p., °C			
pound	X	Y	Z	(mol.w.)	% N	% S	% C	Yield, %	
IIa	н	н	н	C ₁₄ H ₁₁ Cl ₂ NS (296·2)	4·73 4·61	10·82 10·75	11·96 11·79	87—90 43·0	
IIb	NO ₂	н	н	C ₁₄ H ₁₀ Cl ₂ N ₂ O ₂ S (341·2)	4·10 4·0	9∙39 9∙31	10·39 10·35	$138 - 140 \\ 53 \cdot 5$	
IIc	Н	Cl	н	C ₁₄ H ₁₀ Cl ₃ NS (330·7)	4·23 4·20	9·69 9·62	10·72 10·68	70 — 73 76·0	
IId	Н	Br	H	C ₁₄ H ₁₀ BrCl ₂ NS (345·1)	4∙06 4∙00	9·29 9·15	10·27 10·10	90—91 62·5	
IIe	Н	н	NO ₂	C ₁₄ H ₁₀ Cl ₂ NOS (341·2)	4·10 3·92	9∙39 9∙26	10·39 10·21	125-128 30·0	
IIf	CH ₃ O	н	н	C ₁₅ H ₁₃ Cl ₂ NOS (326·2)	_	-	_	decompo- sition ^a 29·5	
IIg	NO ₂	CH3	н	C ₁₅ H ₁₂ Cl ₂ N ₂ O ₂ S (367·3)	3∙81 3∙68	8·73 8·60	9·65 9·51	122—125 70·5	
IIIa	н	н	Н	C ₁₆ H ₁₇ N ₃ S (284·6)	14·76 14·75	11·26 11·23	-	125-128 40-0	
IIIb	NO ₂	н	Н	C ₁₆ H ₁₆ N ₄ O ₂ S (328·4)	17∙06 16∙98	9·76 9·65	-	175 — 177 55·0	
IIIc	Н	CI	Н	C ₁₆ H ₁₆ CIN ₃ S (317·8)	13·22 13·15	10∙08 9∙92	-	118 — 120 60·0	
IIId	Н	Br	Н	C ₁₆ H ₁₆ BrN ₃ S (362·3)	11∙59 11∙02	8∙85 8∙63	-	155 45	
IIIe	Н	Н	NO ₂	C ₁₆ H ₁₆ N ₄ O ₂ S (328·4)	17·06 16·90	9∙76 9∙59	_	168 — 170 42·0	
IIIf	H	н	Н	C ₂₀ H ₁₅ N ₅ O ₄ S (421·4)	16∙62 16∙60	7∙60 7∙58	_	246 248 70	
IIIg	NO ₂	CH3	н	C ₂₁ H ₁₆ N ₆ O ₆ S (480·4)	17·49 17·36	6∙69 6∙59		254-256 66·0	

" The compound was very hygroscopic and was therefore not analysed.

chlorides is hitherto not described. Since 1,2,4-triazolidine derivatives receive still increasing attention²⁻⁴, we tried to find a new method of their preparation.

Series of substituted thiocarbamoyl chlorides IIa-g (Table I) was prepared by reaction of thiophosgene with substituted azomethines. These compounds reacted in an anhydrous medium with N,N-dimethylhydrazine or N-(2,4-dinitrophenyl)hydrazine to give the corresponding substituted 1,2,4-triazoline-5-thiones IIIa-g. Best results were obtained when a solution of thiocarbamoyl chloride in benzene was added to N,N-dimethylhydrazine (at room temperature) or N-(2,4-dinitrophenyl)hydrazine (reflux) in benzene (Scheme 1). The optimum reaction time was found by following the reaction chromatographically; longer reaction times gave rise to side products.

Com- pound	δ (CH) (cm ⁻¹)		ν skeletal (cm ⁻¹)			ν(CH) (cm ⁻¹)		δ , ppm	
IIIa	850	945	1 315 1 435 1 505	1 385 1 460 1 600		2 865 2 970 3 030		CH ₃ , 2·75, 3·22 s CH, 5·73 s H arom 7·25 m	
IIIb	830 945	860	1 320 1 505	1 385 1 600	1 460	2 870 2 970 3 030		CH ₃ , 2·75, 3·15 s CH, 5·5 s H arom, 7·25 m, 7·8	
IIIc	830 945	860 5	1 320 1 460	1 350 1 505	1 380 1 600	2 870 3 030	2 970	CH ₃ , 2·78 s, 3·68 s CH, 5·96 s H arom, 7·1 m	
IIId	830 950	860)	1 315 1 505	1 395 1 600	1 440	2 860 3 0	2 950 025	CH ₃ , 2·7, 3·75 s CH, 5·6 s H arom, 7·23	
IIIe	860 950	900)	1 320 1 585	1 395	1 490	2 855 3 020	2 980	CH ₃ , 2·65, 3·80 s CH, 5·7 s H arom, 7·85 m	
IIIf ^a	835	925	1 315 1 520	1 360 1 600	1 430	2 850 3 (3 000 020	CH, 6·6 d H arom, 7·75, 8·24, 8·95 NH 9·75 d	
Пİg ^b	860	945	1 325	1 375	1 460	2 850 2 975	2 920	_ ′	

TABLE II Spectral Data of the Substituted 1.2.4-Triazolidine-5-thiones

^{*a*} ν (NH) 3320 cm⁻¹; ^{*b*} ν (NH) 3280 cm⁻¹.

Collection Czechoslov. Chem. Commun. [Vol. 42] [1977]

The IR and ¹H-NMR spectra of the products are given in Table II. The ¹H-NMR spectra exhibit a singlet (δ 5–6 ppm) corresponding to the proton in the position 3 of the triazolidine ring.

Triazolidines are not the only products of the studied reaction. For example, in the preparation of the compound *IIId* we were able to prove benzaldehyde and 4-bromophenyl isothiocyanate in the reaction mixture. Treatment of the compound *IIf* with N,N-dimethylhydrazine did not afford the corresponding triazolidine and the reaction mixture contained 4-methoxyphenyl isothiocyanate, benzaldehyde, benzalmethylaniline and azomethine.

EXPERIMENTAL

Thiocarbamoyl Chlorides IIa-g

A solution of freshly distilled thiophosgene (6.0 g; 0.05 mol) in benzene (15 mi) was added in the course of 15 minutes to a stirred solution of the corresponding azomethine (0.05 mol) in benzene (25 ml). The mixture was stirred for 1 h at $35-45^{\circ}$ C and the precipitate was filtered and crystallised from cyclohexane. Physical constants and analytical data of the prepared thiocarbamoyl chlorides are given in Table I.

Tetrasubstituted 1,2,4-Triazolidine-5-thiones IIIa-e

A solution of the corresponding thiocarbamoyl chloride (0.025 mol) in benzene (30 ml) was added dropwise at room temperature to a stirred solution of N,N-dimethylhydrazine (5.0 g; 0.085 mol) in benzene (100 ml) and the mixture was stirred at $40-50^{\circ}$ C for 1 h. After cooling, the mixture was poured into water (150 ml), the benzene layer separated, dried and concentrated *in vacuo* to a small volume. The product was precipitated by addition of cyclohexane, filtered and crystallised from ethanol. Physical constants of the products and analyses are given in Table I.

Trisubstituted 1,2,4-Triazolidine-5-thiones IIIf, g

A mixture of the corresponding thiocarbamoyl chloride (0.035 mol), N-(2,4-dinitrophenyl)hydrazine (0.01 mol) and benzene (80 ml) was refluxed for 4 h. After cooling, water (100 ml) was added, the benzene layer was separated, dried and concentrated to a small volume. The separated product was filtered and crystallised from acetone. For physical properties and other data see Table I.

Spectral Measurements

1R spectra were taken in the region 700-3600 cm⁻¹ on a UR-20 (Zeiss, Jena) double-beam spectrophotometer. Concentration of the chloroform solutions was 4. 10^{-2} M. The ¹H-NMR spectra were measured in deuteriochloroform on a Tesla BS 847 C (80 MHz) instrument, internal standard hexamethyldisiloxane, the δ values were related to tetramethylsilane. The spectral data are listed in Table II.

748

REFERENCES

- 1. Koyano K., Mc Arthur C. R.: Can. J. Chem. 51, 333 (1973).
- 2. Dubenko R. G., Pelkis P. S.: Zh. Obshch. Khim. 33, 2220 (1963).
- 3. Abbasi M. S., Trivedi J. P.: J. Indian Chem. Soc. 42, 333 (1965).
- 4. Evans G. W., Milligan B.: Aust. J. Chem. 20, 1783 (1967).

Translated by M. Tichý.